Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Franz Dornhaus, Hans-Wolfram Lerner and Michael Bolte*

Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.005 Å R factor = 0.020 wR factor = 0.047 Data-to-parameter ratio = 19.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The 'absolute structure' of dimethyldiphenylphosphonium iodide

The structure of the title compound, $C_{14}H_{16}P^+$ ·I⁻, has been reported previously by Staples, Carlson, Wang & Fackler [*Acta Cryst.* (1995), C**51**, 498–500] in the space group *P*6₅22 without any information about the determination of the absolute structure. We present here a redetermination of this structure from new intensity data in the space group *P*6₁22 with the direction of the polar axis unequivocally determined for this particular crystal. Both the cation and anion are located on twofold rotation axes.

Received 20 April 2005 Accepted 25 April 2005 Online 14 May 2005

Comment

Recently, we reported that, in the thermolysis of $Me_3PH^+\cdot Cl^-$, the phosphonium salts $Me_4P^+\cdot Cl^-$ and $Me_2PH_2^+\cdot Cl^-$ were formed in CD_2Cl_2 at 323 K (Margraf *et al.*, 2002). Interestingly, we have now observed a reaction of Ph_2PH with CH_3I at room temperature in tetrahydrofuran which produces the phosphonium salts $Ph_2PMe_2^+\cdot I^-$ and $Ph_2PH_2^+\cdot I^-$ in quantitative yield (see scheme). X-ray quality crystals of the title compound, (I), were obtained from the reaction solution.

2Ph₂PH+ 2CH₃I
$$\xrightarrow{r.t.}$$
 Ph₂PMe₂+I⁻ + Ph₂PH₂+I⁻
tetrahydrofuran

A perspective view of (I) is shown in Fig. 1. The structure is composed of discrete $[C_{14}H_{16}P]^+$ cations and I⁻ anions. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 1.7 plus one update; *MOGUL* Version 1.0; Allen, 2002). The cation and anion are each located on twofold rotation axes. Compound (I) has previously been reported in the space group $P6_522$ without any information on the absolute structure (Staples *et al.*, 1995). We present here a redetermination of this structure from new intensity data in the space group $P6_122$ with the direction of the polar axis unequivocally determined for this particular crystal. Apart from the different space groups (corresponding

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

to different absolute structures), there are no significant differences between the two structure determinations.

Experimental

 CH_3I (0.201 g) was added to a solution of Ph_2PH (0.210 g) in tetrahydrofuran (3 ml) at room temperature. Colourless crystals of (I) were grown from an acetonitrile solution at ambient temperature.

Mo $K\alpha$ radiation

reflections $\theta = 3.6-26.7^{\circ}$ $\mu = 2.28 \text{ mm}^{-1}$ T = 173 (2) KBlock, colourless $0.22 \times 0.20 \times 0.17 \text{ mm}$

 $\begin{array}{l} R_{\rm int} = 0.032 \\ \theta_{\rm max} = 26.3^{\circ} \\ h = -14 \rightarrow 14 \end{array}$

 $k = -14 \rightarrow 14$

 $l = -22 \rightarrow 18$

Cell parameters from 15 434

1475 independent reflections 1445 reflections with $I > 2\sigma(I)$

Crystal data

$C_{14}H_{16}P^{+}\cdot I^{-}$
$M_r = 342.14$
Hexagonal, P6 ₁ 22
a = 11.7463 (6) Å
c = 18.2841 (10) Å
V = 2184.8 (2) Å ³
<i>Z</i> = 6
$D_x = 1.560 \text{ Mg m}^{-3}$
Data collection
Stoe IPDS-II two-circle
diffractometer
ω scans
Absorption correction: multi-scan
(MIII ADC. Smalt 2002, Dlagain

Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing,
1995)
$T_{\min} = 0.634, T_{\max} = 0.698$
15 434 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0253P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.020$	+ 0.9694P]
$wR(F^2) = 0.047$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.20	$(\Delta/\sigma)_{\rm max} = 0.001$
1475 reflections	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
74 parameters	$\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Absolute structure: Flack (1983)
	546 Friedel pairs
	Flack parameter = $-0.02(3)$

Table 1

Hydrogen-bonding geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C7-H7C\cdots I1^{ii}$	0.98	3.01	3.983 (2)	174

Symmetry codes: (ii) 1 + x - y, x, $\frac{1}{6} + z$.

H atoms were refined with fixed individual displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C) \text{ or } 1.5 U_{eq}(C_{methyl})]$ using a riding model, with C-H = 0.95 and 0.98 Å for aromatic and methyl H atoms, respectively.

Figure 1 Perspective view of the title compound with the atom numbering; displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) 1 - y, 1 - x, $\frac{5}{6} - z$.]

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Margraf, G., Lerner, H.-W. & Bolte, M. (2002). Acta Cryst. E58, 0546-0547.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). *SHELXTL-Plus*. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. A36, 7–13.
- Staples, R. J., Carlson, T., Wang, S. & Fackler, J. P. Jr (1995). Acta Cryst. C51, 498–500.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.